Color harmonization

CVFX @ NTHU

26 Feb 2015

Outline

Color harmonization

Color harmonization and cConceptualization

"Color Harmonization" by Cohen-Or et al.
"Color Conceptualization" by Hou and Zhang

HSV color space

- Hue, saturation, value
- Non-linear

The paper

Color Harmonization

Daniel Cohen-Or Olga Sorkine Ran Gal Tommer Leyvand Tel Aviv University*

Ying-Qing Xu Microsoft Research Asia ${ }^{\dagger}$

original image

harmonized image

Figure 1: Harmonization in action. Our algorithm changes the colors of the background image to harmonize them with the foreground.

In grayscale

Color Harmonization

| Daniel Cohen-Or | Olga Sorkine
 Tel Aviv University* | Ran Gal | Tommer Leyvand |
| :--- | :---: | :---: | :---: | | Ying-Qing Xu |
| :---: |
| Microsoft Research Asia |

original image

harmonized image

Figure 1: Harmonization in action. Our algorithm changes the colors of the background image to harmonize them with the foreground.

Is automated color harmonization useful?

- Adobe Kuler
http://kuler.adobe.com/
- Applications: interior design, poster design

[Cohen-Or et al.]

Harmonic color scheme

Subjectiv? objective?

Analogy to sound

- Scales, chords

Measuring the harmony

- One-dimensional optimization

$$
F(X,(m, \alpha))=\sum_{p \in X} \| H(p)-\underset{\substack{\uparrow \\ \text { sector border hue }}}{E_{T_{m}(\alpha)}(p) \| \cdot S(p)}
$$

$$
\begin{aligned}
& M\left(X, T_{m}\right)=\left(m, \alpha_{0}\right) \text { s.t. } \alpha_{0}=\underset{\alpha}{\operatorname{argmin}} F(X,(m, \alpha)) \\
& B(X)=\left(m_{0}, \alpha_{0}\right) \text { s.t. } m_{0}=\underset{m}{\operatorname{argmin}} F\left(X, M\left(X, T_{m}\right)\right)
\end{aligned}
$$

Graph cuts

- Resolving ambiguities

$$
E(V)=\lambda E_{1}(V)+E_{2}(V)
$$

$$
\begin{aligned}
E_{1}(V) & =\sum_{i=1}^{|\Omega|} \| H\left(p_{i}\right)-\underset{\substack{\uparrow \\
\text { color of the assigned sector edge }}}{H\left(v\left(p_{i}\right)\right) \| \cdot S\left(p_{i}\right)} \\
E_{2}(V)= & \sum_{\substack{\{p, q\} \in N}} \delta(v(p), v(q)) \cdot S_{\max }(p, q) \cdot\|H(p)-H(q)\|^{-1} \\
& 4 \text { - or 8-connected neighborhood }
\end{aligned}
$$

- $\delta(v(p), v(q))$ equals 1 if $v(p), v(q)$ are different

Shifting colors

$$
G_{\sigma}(x)=\frac{1}{\sigma / \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) \in(0,1]
$$

$$
e^{-1 / 2} \approx 0.6065
$$

Problems mentioned by the authors

Separated regions

- Adding scribbles by users
- Semantic segmentation: important research topic in computer vision

The shifting is many-to-one
Cannot change colors with low saturation

- Only alters the hue channel

Future work mentioned by the authors

Keep certain colors unchanged, add hard constraints

Histogram matching

Color conceptualization

$$
H_{I}(\theta)=\sum_{i(H)=\theta} i(S) \cdot i(V) \quad i \in I
$$

Kullback-Leibler Divergence $\quad D(i \| C)=\sum_{\theta} H_{i}(\theta) \log \frac{H_{i}(\theta)}{H_{C}(\theta)}$

Discussions

The methods of color harmonization \& conceptualization

- How to implement these methods now?
- Graph cuts

Problem modeling
-What are the variables and parameters?

- Objective function
- How to measure harmony?
- How to measure similarities?

